

Situation and Perspectives - VLDB End. 2

Future infrastructure for applications?

- Managing components, application services?
- Distributed client/middleware/server computing?
- Application frameworks, ERPs?
- Role in XML, e-commerce?

Role of DBMSs

- Storage manager only in all these cases.
- Our position has moved far away from the applications.
- Client application development takes place on other platforms.

Higher Order Databases

Situation and Perspectives - Brodie Current Database Era Nears Its End **Brodie** from his Talk: Inability to meet vast increases in - Transaction volumes Data volumes - Heterogeneity Transaction types Interoperation - Distribution Accessibility Architectural complexity Proliferation of engine types Proliferation of data repositories Band-Aid solutions for real requirements Workflow Data warehouse, data mining Remember data independence? © GTE Technology On

Higher Order Databases

SCSC99 6

Situation	n and Perspectives - Carey et al.
Carey Hellerstein Stonebraker	 Why we need to rethink everything! All current DBMSs architected in the late 1970s why the world is different now
Seminar at the University of Berkeley, 1999	 CPU, memory, disk up by 10 ** 6 in the last 20 years Design point of 1 Tbyte buffer pool in 2005, up from 1 Mbyte in the 1970s It will NOT be 250 million 4K pages!
Higher Order Databases	SCSC99 7

Situation and Perspectives - Carey et al. 2 • Most serious applications use a TP monitor Carey • I.e. a three tier application architecture Hellerstein – data at the bottom in a DBMS - code in middle tier in TP monitor Stonebraker - user interface on the client • DBMSs are currently "bloated" - stored procedures – object-relational features – warehouse features - triggers - standard benchmark hacks

Higher Order Databases

Situation	and Perspectives - Carey et al. 3
Carey Hellerstein Stonebraker	Assumptions Must Design for a Data and Machine Federation
	 7 X 24 operation requires wide area replication understood by the DBMS transactionally consistent fastest mechanism is to move the log
	• Incredible scalability requires more than the biggest single system
Higher Order Databases	SCSC99 9

DocEngine Measurements						
Insertion speed-u	p from 1 t	o 4 cor	nponents			
	Placement / Workload	DISTAB	HASHLOC			
	(1,1)	2.8	2.5			
	(5,5)	4.2	6.3			
	(10,10)	6	12			
Retrieval speed-	up from 1 Placement / Workload	to 4 co DISTAB	mponents HASHLOC			
	(1,1)	2.7	2.7			
	(5,5)	2.5	6.4			
	(10,10)	2.5	15			

